API Documentation
Docstrings for CALIPSO.jl interface members can be accessed through Julia's built-in documentation system or in the list below.
Contents
Index
CALIPSO.Constraint
CALIPSO.Constraints
CALIPSO.Cost
CALIPSO.Dynamics
CALIPSO.Options
CALIPSO.Solver
CALIPSO.callback_inner
CALIPSO.callback_outer
CALIPSO.empty_constraint
CALIPSO.get_trajectory
CALIPSO.initialize!
CALIPSO.initialize_actions!
CALIPSO.initialize_states!
CALIPSO.linear_interpolation
CALIPSO.solve!
Solver
CALIPSO.Solver
— TypeSolver(methods, num_variables, num_parameters, num_equality, num_cone;
parameters, nonnegative_indices, second_order_indices, custom, options)
CALIPSO solver
methods: ProblemMethods - includes objective and constraint functions, as we as their derivatives
num_variables: Int - dimension of primal decision variables
num_parameters: Int - dimension of problem data
num_equality: Int - dimension of equality constraints
num_cone: Int - dimension of cone constraints
parameters: Vector{Real} - problem data
nonnegative_indices: Vector{Int} - indices of cone constraints corresponding to nonnegative orthant
second_order_indices: Vector{Vector{Int}} - indices of cone constraints corresponding to second-order cones
custom: Any - user-provided type used for solver callbacks
options: Options - solver settings
CALIPSO.solve!
— Functionsolve!(solver)
method for optimizing a Solver
solver: Solver
CALIPSO.initialize!
— Functioninitialize!(solver, guess)
method for initializing primal decision variables
solver: Solver
guess: Vector{Real} - user-provided initialization for primal decision variables
CALIPSO.Options
— TypeOptions
CALIPSO solver settings
CALIPSO.empty_constraint
— Functionempty_constraint(x, θ)
convenience method for empty constraints
x: Vector{Real} - primal decision variables
θ: Vector{Real} - problem data
CALIPSO.callback_inner
— Functioncallback_inner(custom, solver)
method called during solver's inner iterations
custom: Any - user-provided type used for solver callbacks
solver: Solver
CALIPSO.callback_outer
— Functioncallback_outer(custom, solver)
method called during solver's outer updates
custom: Any - user-provided type used for solver callbacks
solver: Solver
Trajectory Optimization
CALIPSO.Cost
— TypeCost(cost, num_state, num_action;
num_parameter, checkbounds, constraint_tensor)
stage-cost type
cost: Function
num_state: Int - dimension of state
num_action: Int - dimension of action
num_parameter: Int - dimension of problem data
checkbounds: Bool - flag for checking @inbounds for codegen methods
constraint_tensor: Bool - flag for generating second-derivative methods
CALIPSO.Constraint
— TypeConstraint(constraint, num_state, num_action;
num_parameter, checkbounds, constraint_tensor)
constraint type
constraint: Function
num_state: Int - dimension of state
num_action: Int - dimension of action
num_parameter: Int - dimension of problem data
checkbounds: Bool - flag for checking @inbounds for codegen methods
constraint_tensor: Bool - flag for generating second-derivative methods
CALIPSO.Constraints
— TypeConstraints
vector of Constraint types
CALIPSO.Dynamics
— TypeDynamics(dynamics, num_next_state, num_state, num_action;
num_parameter, checkbounds, constraint_tensor)
dynamics type
dynamics: Function
num_next_state: Int - dimension of next state
num_state: Int - dimension of current state
num_action: Int - dimension of current action
num_parameter: Int - dimension of problem data
checkbounds: Bool - flag for checking @inbounds for codegen methods
constraint_tensor: Bool - flag for generating second-derivative methods
CALIPSO.initialize_states!
— Functioninitialize_states!(solver::Solver, states)
method for initialized primal variables with state trajectory
solver: Solver
states: Vector{Vector{Real}} - trajectory of states
CALIPSO.initialize_actions!
— Functioninitialize_actions!(solver::Solver, actions)
method for initialized primal variables with action trajectory
solver: Solver
actions: Vector{Vector{Real}} - trajectory of actions
CALIPSO.get_trajectory
— Functionget_trajectory(solver)
method for returning state and action trajectories from solver
solver: Solver
CALIPSO.linear_interpolation
— Functionlinear_interpolation(initial_state, final_state, horizon)
method for generating a linear interpolating trajectory
initial_state: Vector{Real} - first state
final_state: Vector{Real} - last state
horizon: Int - length of trajectory