API Documentation
Docstrings for CALIPSO.jl interface members can be accessed through Julia's built-in documentation system or in the list below.
Contents
Index
CALIPSO.ConstraintCALIPSO.ConstraintsCALIPSO.CostCALIPSO.DynamicsCALIPSO.OptionsCALIPSO.SolverCALIPSO.callback_innerCALIPSO.callback_outerCALIPSO.empty_constraintCALIPSO.get_trajectoryCALIPSO.initialize!CALIPSO.initialize_actions!CALIPSO.initialize_states!CALIPSO.linear_interpolationCALIPSO.solve!
Solver
CALIPSO.Solver — TypeSolver(methods, num_variables, num_parameters, num_equality, num_cone;
parameters, nonnegative_indices, second_order_indices, custom, options)
CALIPSO solver
methods: ProblemMethods - includes objective and constraint functions, as we as their derivatives
num_variables: Int - dimension of primal decision variables
num_parameters: Int - dimension of problem data
num_equality: Int - dimension of equality constraints
num_cone: Int - dimension of cone constraints
parameters: Vector{Real} - problem data
nonnegative_indices: Vector{Int} - indices of cone constraints corresponding to nonnegative orthant
second_order_indices: Vector{Vector{Int}} - indices of cone constraints corresponding to second-order cones
custom: Any - user-provided type used for solver callbacks
options: Options - solver settingsCALIPSO.solve! — Functionsolve!(solver)
method for optimizing a Solver
solver: SolverCALIPSO.initialize! — Functioninitialize!(solver, guess)
method for initializing primal decision variables
solver: Solver
guess: Vector{Real} - user-provided initialization for primal decision variablesCALIPSO.Options — TypeOptions
CALIPSO solver settingsCALIPSO.empty_constraint — Functionempty_constraint(x, θ)
convenience method for empty constraints
x: Vector{Real} - primal decision variables
θ: Vector{Real} - problem dataCALIPSO.callback_inner — Functioncallback_inner(custom, solver)
method called during solver's inner iterations
custom: Any - user-provided type used for solver callbacks
solver: SolverCALIPSO.callback_outer — Functioncallback_outer(custom, solver)
method called during solver's outer updates
custom: Any - user-provided type used for solver callbacks
solver: SolverTrajectory Optimization
CALIPSO.Cost — TypeCost(cost, num_state, num_action;
num_parameter, checkbounds, constraint_tensor)
stage-cost type
cost: Function
num_state: Int - dimension of state
num_action: Int - dimension of action
num_parameter: Int - dimension of problem data
checkbounds: Bool - flag for checking @inbounds for codegen methods
constraint_tensor: Bool - flag for generating second-derivative methodsCALIPSO.Constraint — TypeConstraint(constraint, num_state, num_action;
num_parameter, checkbounds, constraint_tensor)
constraint type
constraint: Function
num_state: Int - dimension of state
num_action: Int - dimension of action
num_parameter: Int - dimension of problem data
checkbounds: Bool - flag for checking @inbounds for codegen methods
constraint_tensor: Bool - flag for generating second-derivative methodsCALIPSO.Constraints — TypeConstraints
vector of Constraint typesCALIPSO.Dynamics — TypeDynamics(dynamics, num_next_state, num_state, num_action;
num_parameter, checkbounds, constraint_tensor)
dynamics type
dynamics: Function
num_next_state: Int - dimension of next state
num_state: Int - dimension of current state
num_action: Int - dimension of current action
num_parameter: Int - dimension of problem data
checkbounds: Bool - flag for checking @inbounds for codegen methods
constraint_tensor: Bool - flag for generating second-derivative methodsCALIPSO.initialize_states! — Functioninitialize_states!(solver::Solver, states)
method for initialized primal variables with state trajectory
solver: Solver
states: Vector{Vector{Real}} - trajectory of statesCALIPSO.initialize_actions! — Functioninitialize_actions!(solver::Solver, actions)
method for initialized primal variables with action trajectory
solver: Solver
actions: Vector{Vector{Real}} - trajectory of actionsCALIPSO.get_trajectory — Functionget_trajectory(solver)
method for returning state and action trajectories from solver
solver: SolverCALIPSO.linear_interpolation — Functionlinear_interpolation(initial_state, final_state, horizon)
method for generating a linear interpolating trajectory
initial_state: Vector{Real} - first state
final_state: Vector{Real} - last state
horizon: Int - length of trajectory